Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6441 -
Telegram Group & Telegram Channel
📊 Промт дня: быстрый разведочный анализ (EDA) нового датасета

Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.

Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты:
• Определи типы переменных (числовые, категориальные и пр.).
• Проверь наличие и долю пропущенных значений по столбцам.
• Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.).
• Оцени распределения признаков и выдели потенциальные выбросы.
• Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.


🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.

Поддерживается использование специализированных инструментов:
📝 pandas_profiling / ydata-profiling — для автоматического отчета,
📝 sweetviz — для визуального сравнения датасетов,
📝 seaborn и matplotlib — для точечных визуализаций распределений и корреляций.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6441
Create:
Last Update:

📊 Промт дня: быстрый разведочный анализ (EDA) нового датасета

Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.

Промт:

Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты:
• Определи типы переменных (числовые, категориальные и пр.).
• Проверь наличие и долю пропущенных значений по столбцам.
• Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.).
• Оцени распределения признаков и выдели потенциальные выбросы.
• Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.


🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.

Поддерживается использование специализированных инструментов:
📝 pandas_profiling / ydata-profiling — для автоматического отчета,
📝 sweetviz — для визуального сравнения датасетов,
📝 seaborn и matplotlib — для точечных визуализаций распределений и корреляций.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6441

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from cn


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA